
J. Fluid Mech. (1973), uol. 58, part 4, pp. 795-815 

Printed in Great Britain. 
7 95 

The interaction of a transient exhaust plume 
with a rarefied atmosphere 

By HOWARD R. BAUM 
Aerodyne Research, Ino., Burlington, Mass. 01803, U.S.A. 

(Received 5 October 1972 and in revised form 23 February 1973) 

The interaction of a gas cloud of specified mass, momentum and energy with an 
atmosphere in uniform motion is studied using the kinetic theory of gases. The 
Krook collision model is used to obtain analytically interpretable and numeric- 
ally tractable results describing the spatial and temporal evolution of the cloud. 
The cloud originates from a continuum source and expands to a free molecular 
flow. It then begins to collide with the atmosphere, and is gradually transformed 
into a continuum flow diffusing through the atmosphere while being convected 
by the uniform motion. 

1. Introduction 
The rarefaction of a continuum gas jet as it expands into a near vacuum has 

been extensively studied in recent years. These studies have application to rocket 
exhaust plumes and molecular beams. They are also extremely interesting in 
their own right as a problem in gasdynamics in which the flow regime changes 
from continuum to free molecular and back again. 

Consider the flow pattern set up by a nozzle emitting an exhaust gas for a 
finite duration and then shutting down. The Knudsen number at the nozzle 
exit in the steady state is assumed to be sufficiently small for a region of con- 
tinuum flow to exist. The flow near the exhaust plume centre-line may be studied 
by considering a spherically symmetric source expanding into a vacuum. The 
steady source problem (in both spherical and cylindrical geometry) has been 
investigated by Brook & Oman (1965), Edwards & Cheng (1966), Hamel & 
Willis (1966), Chen (1970) and Thomas (1971). The corresponding unsteady 
expansions have been analysed by Freeman & Grundy (1968) and Grundy 
& Thomas (1969). Some properties of an axially symmetric expansion have 
been considered by Grundy (1969); while Peracchio (1970) has studied the flow 
pattern created by a two-dimensional nozzle. The above studies follow the 
rarefaction through the onset of translational non-equilibrium into a free 
molecular flow. A useful estimate of the point at which translational ‘freezing’ 
occurs in rocket exhaust plumes is given by Draper & Hill (1969). When the 
background density is sufficiently low for the ambient mean free path to be much 
larger than the distance from the nozzle exit to the region where translational 
non-equilibrium occurs, the interaction of the exhaust gas with the atmosphere 
is decoupled from the initial rarefaction process. This fact has been exploited by 
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Brook & Hamel (1972) in their analysis of the expansion of a spherical source into 
a stationary background gas. 

The present work considers the time-dependent interaction of a finite gas 
cloud formed by the pulsed operation of a rocket motor with a low-density back- 
ground in uniform motion. The number, momentum and energy of the exhaust 
gas molecules are assumed to be small compared with those of the background 
molecules contained in a cube of side one mean free path. The initial rarefaction 
region is represented by a transient point source with this prescribed flux of mass, 
momentum and energy. The interaction of the exhaust gas with the background 
gas then becomes a linear problem. The Krook collision integral is used to repre- 
sent the collision dynamics and permits the construction of analytical solutions. 

This calculation is applicable to an attitude control or other small motor 
operating at  very high altitudes. Such motors often have a firing time which is 
comparable with or even less than the mean time between collisions at  the 
operating altitude. Since the natural time scale for the interaction is the mean 
time between collisions, this process is essentially unsteady, even if the flow near 
the nozzle exit is steady while the rocket is firing. 

The solution has the form of a bimodal distribution function. Por times smaller 
than the ambient mean collision time the gas is essentially in free molecular 
flow, and the distribution function is determined by the properties of the steady 
rarefaction that existed near the nozzle exit while the motor was operating. This 
free molecular solution is multiplied by an exponentially decaying function of 
time, representing the decay of the beam by collisions with the atmosphere. The 
details of the collision process are represented by the second term in the distribu- 
tion function. This term has the form of the convolution over space and time 
of the free molecular flow with a scattering Green’s function. The scattering func- 
tion contains the ambient atmosphere parameters, while the free molecular 
function contains the rocket engine parameters. In  addition, although the overall 
flow is three-dimensional and unsteady, none of the separate components of the 
solution each contain all possible independent variables. The free molecular flow 
is axially symmetric, the axis of symmetry being the rocket thrust axis. The 
scattering function depends on the time measured in units of reciprocal ambient 
collision frequency. The scalar distance variable is measured from a point u,t 
removed from the rocket engine where u, is the ambient wind velocity in the 
engine rest frame. The distance is measured in ambient mean free path units. 
After several collision times, the scattering function becomes the macroscopic 
diffusion Green’s function, and the expansion process ultimately is describable 
as macroscopic diffusion in a uniformly moving stream. 

2. Mathematical formulation 
The motion of the exhaust molecules is described by a distribution function 

f(x, v, t ) ,  the phase space density. The distribution is assumed to satisfy the 
kinetic equation 

Z+V.% ?f = w ( n ~ - - f ) + W a ( n Q ~ - f ) + ~ ( X ) & O ( t )  QJV). 
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Here 6(x) is a delta function located at  the nozzle exit x = 0 and 

@s = @(US, q), @a = @(ua, T!) .  

The number density n, macroscopic velocity u and temperature 27 of the exhaust 
gas are defined as moments of the distribution function : 

n(x, t )  = fd3w, nu(x, t )  = vfd", s s 
$nkT(x, t )  = $m(v - ~ ) ~ f d ~ ~ .  s 

The first term on the right-hand side of (1) represents the interaction of the 
exhaust gas with itself. The self-collision frequency w is proportional to the 
density. Thismakes the term first dominant near the nozzle exit and negligible far 
from it. Since the interaction of the exhaust with theambient background is the 
subject of the investigation, this term will be carried along solely to estimate the 
residual effect of self-collisions on the far field. The second term on the right- 
hand side of (I) describes the interaction of the exhaust with the background 
atmosphere. The ambient velocity u, and temperature T, are constant because 
the exhaust gas is so dilute by the time it interacts with the atmosphere that only 
small changes in ambient macroscopic properties can occur. This interaction 
term differs from that given by Gross & Krook (1956). Conservation of momentum 
and energy requires that u, and T, be replaced by their respective effective 
interaction quantities u,, and q,. For example, conservation of momentum leads 
to the well-known expression 

u,, = (mu+m,u,)/(m+m,). 

However, the momentum of the exhaust gas is not conserved. The rate a t  which 
momentum is transferred to the exhaust gas is given by (1) as 

w,nm(u, - u). 

By using the above expression for u,,, the momentum transfer rate is found to be 

where u is the velocity deGned in ( 2  b). Thus, by writing w, = m,/(m + m,)ZJ,, 
the two expressions can be made identical for any choice of collision frequency 
w,. Similar remarks apply to the energy transfer. Since attention may be confined 
to the exhaust gas (the background gas being a uniform source or sink of momen- 
tum and energy), the only conserved quantity of interest is the number (or mass) 
of exhaust molecules. This quantity is conserved in the present formulation. 

The h a 1  term (1) is the source of the exhaust gas that is used to represent 
continuum flow near the nozzle exit. The point-source representation is justified 
when the dimensions of the translational freezing surface (see Draper & Hill 
1969) are much smaller than the mean free path for the interaction of the exhaust 
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gas with the atmosphere. The parameters Qo(t), us and T, are determined by equat- 
ing the mass, momentum and energy flux of the source to the corresponding 
properties of the nozzle exit. Thus 

mQo = (PA),, mQou, = [(P +pu2) Ale s7 (3% b )  

[(h+$u2)puA], = Qo [gmu,"+#lc~+t(Z",)]. (3c) 

The subscript e in (3) refers to nozzle exit conditions averaged over the nozzle 
exit area A .  The quantities p ,  p and h are the pressure, density and enthalpy of 
the gas, while s is a unit vector in the direction of the thrust. The internal energy 
per molecule a t  the exit is SET + E(T) ,  where e(T)  is the average energy per mole- 
cule frozen in internal (non-translational) degrees of freedom. e(T)  can be evalu- 
ated in terms of the specific heat ratio y at the exit. Let the average number of 
excited degrees of freedom be a (not necessarily an integer). Then 

$kT,+€(T,) = akq., (4) 
y = c,/cl, = (1 + a)/a. 

Equations (3) and (4) can be manipulated to yield the expressions 

us= u, -+I  [ Y h E  1 
rr, 12yfw:-(y-l) 
T , = 2  l+yX," . 

The source properties evidently become the exit properties as the exit Mach 
number M, becomes large. It should be noted that the exit Mach numbers Me 
implied in this calculation are supersonic and the apparent singularity in ( 5 b )  
at 1M: = (y - l)/2y cannot occur. 

The parameter Qo(t) is the total particle flux emitted by the nozzle. The nozzle 
is assumed to operate with uniform conditions for a time to and then shut down 
instantaneouslv. Thus 

(6) 

The mathematical model of the exhaust gas interaction then consists of (1) 
and (2), which hold for all x and all t > 0. The continuum region near the nozzle 
is represented by a point source at  x = 0 whose parameters are defined by 
(3)-(6). Initially there are no exhaust particles: 

f(x,v, t)  = 0 at t = 0. (7) 

The formulation is consistent if QotO/n,A~ I, where A, is mean free path for 
collisions with ambient molecules and nu is the ambient density. A, is related to 
the ambient collision frequency o, by 

o,A, = (2kTa/m)3. 

This inequality is the mathematical statement of the condition that the exhaust 
gas concentration n/na is small on the scale on which the interaction occurs. 
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3. Formal solution 

Fourier-Laplace transform of any function g(x, t )  as follows: 
The formal solution to (1) is obtained by transform methods. Define the 

Now multiply (1) by e-*Sr-pt, integrate over all x and all t > 0, and use (7) and 
(8) to get 

(p+ik.v+w,)f-w,cD,n = w ( n @ - - - f ) + a ( p )  as. (9) 

Using (2a) and (9) the transformed number density is found to be 

In order to proceed further, it is necessary to consider the solution (i0) as a 
function ofp for fixed real k. The two expressions in the second curly bracket each 
converge separately for large p .  They represent Laplace transforms of physically 
acceptable functions which will be studied in detail below. The first curly bracket 
however, is not convergent as it stands. Thus, in order to apply the convolution 
theorem to (lo), the first factor must be rewritten as 

1 - W ,  
+ @ . s p  + ik. V + w, 

The solution may now be written as 

E(k,p) = Z,(k, P )  + E,(k,p) + %(k,P), (114 

The first term n,(x, t )  is a free molecular flow originating at the source which is 
continuously depleted by collisions with the atmosphere. The term n2(x, t )  is 
the correction to this flow arising from the remaining self-interactions of exhaust 
molecules outside the continuum region. The third term n3(x, t )  represents the 
interaction of the free molecular flow n, + n2 with the atmosphere. The interac- 
tion is represented by a convolution of n, + n2 with an interaction Green’s func- 
tion G(x, t ) .  These three expressions will now be studied in detail. 



aoo H. R. Baum 

4. Sourceflow 
The source flow n,(x, t )  may itself be represented as a convolution of the par- 

ticle flux history Qo(t) with the inverse of the remaining expression in %,(k,p). 
Thus 

The integrals over k and p can easily be carried out to yields 

ik .x+pt' 
= e-uaf 6(x - vt'). 

Substituting this result back into (12), integrating over v and using the expres- 
sion (6) for Qo(t) gives 

A t  this point it is appropriate to define a coordinate system. The unit thrust 
vector s and the ambient velocity u, define a plane. Define a unit vector a such 
that u, = ",a. Let $ be the angle between s and a. A right-handed Cartesian 
co-ordinate system is then (see figure 1) 

sin@ ' 
. ( s x a ) x s .  . s x a .  

J = -  S. 
sin @ ' I =  

Spherical co-ordinates, with the polar angle 8 measured from s and the azi- 
muthal angle q5 measured from i allow the position vector x and the velocity U, 
to be represented as 

(s x a) x s s x a  
sin $ sin @ 

s x a ) x s  sin @ + s cos$). 

- sin 0 cos Q +-sin 8 sin Q + s cos8 

sin @ 

Returning to the solution (13) the integrals may be explicitly calculated for 
the important case w,tO < 1. Under these conditions 

Using t'-l as the variable of integration the above expression is easily evaluated, 
yielding 

n,(x,t) = Qoe-wat g (2rz)'exp( - - Wzsin20) [-Fl(a)+Pl(/3)], (15a) 

(16b)  

n2 x2 
Fl(p) = in* W, COB B erf /3 - 4 e-Ba, 
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1' 
u,, wind direction f l  

'S, thrust axis 

~ 

FIGURE 1. Co-ordinate system employed showing the wind axis a, the thrust axis s 
and the position vector x. Nozzle exit a t  the origin. 

This result applies for times t > to. For times t < to, solution (15) applies with 
the value of p taken as + 00. Thus 

Qo e-wat 2mt 
4nx2 T ~ T ,  n,(x, t )  = - - exp ( - W," sin2@ {mi W, cos 8 erfc a + e-z'); 0 < t < to. 

(16) 

Note that when the factor exp ( - w,t) is omitted (15) is an exact solution to 
the free molecular pulsed source, while (16) is the corresponding solution for the 
initiation of a steady source. These free molecular flows are of interest in their 
own right and will be briefly considered here. The distribution functionf,(x, v, t )  
associated with n, is easily seen from ( 1 2 )  to be 

rt 

fl(x, v, t )  = J dt' e-wat' QoS(x - vt') CD,(v). 
t-to 

Multiplying (17) by v, integrating over v and assuming @,to < 1 yields 

x Q0 exp ( - w, t - W," sin2 8) 
x x2 778 

nlul(x, t )  = - - [FZ(P) - 4 ( 4 1 ,  

F,(a) = - in* (W,2 cost 8 + 9 )  erf a - (W, cos 8 + +a) e-aa. 

Next multiply (17) by v2 and carry out the same procedure to obtain 

P&) = &d W,cos8[++ (F~cos19)~]erfa--{~(a~+ 1) ++W,cosB(a+ W , C O S ~ ) ) ~ - ~ ' .  
51  F L M  58 
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Finally, (17)-(19) may be combined to solve for u1 and T,: 

Equations (15) and ( 2 0 )  constitute the free molecular solution to the pulsed source 
problem, while the starting flow is given by (16) and (20) with /3 = co. 

These solutions illustrate the qualitative difference in the asymptotic behaviour 
of the kinetic temperature of a steady expansion as opposed to that of a pulsed 
flow. First consider the steady case. The temperature is obtained from ( 2 0 b )  
by setting /3 = co and a = - W,cos8. Thus 

G(p) = $774 w, cos 8 [+ + (w, cos 8)2], 

F&3) = in* (WZ, cos2 8 + a), F1(P) = &7t K C O S  8. 

Since Tl(a), F2(a) and F3(a) are all bounded Tl(x) depends only on 8. I n  particular 
there is no radial decay. Next consider the transient pulsed case. For values of 
to/t < I, /3 approaches a. In  fact 

Now expand the solutions in a Taylor series in /3 - a to get 

x 2kT &P;(a) x 
u , ( x , t )  - -s - - 

x ( rn ) l q a )  - t' 

Equation (21b) shows that in the expanding shell that constitutes the free 
molecular gas cloud the temperature is decreasing at  a rate proportional to 
(t,/t)2. Moreover, the velocity is radial and the maximum density on each ray is 
located a t  x = us€ cos 8. 

The density is approximately spherically symmetric about the point 

x = ust for € % to 

and decreases in magnitude like t-3e-wat. 

5. Self-scattering effects 
The purpose of this section is to estimate the relative importance of the source 

and self-scattering contributions (n, and n2 respectively in (11)) to the density. 
Since the source term is assumed to contain the continuum region dominated by 
self-collisions, it is reasonable to anticipate that it is the more important one. 
The approach used in this section is to assume that the formal solution n2(x, t )  
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can be evaluated using the expressions obtained in the preceding section for the 
source flow n,(x, t).  The result that n2 is indeed much smaller than n, then pro- 
vides the required check on the calculation. 

The inversion of ?i,(k,p) in (1 15) may be performed with the aid of the con- 
volution theorem to give 

Z = u(n@ -f) = Z ( x ,  v, t ) .  

Carrying out the v integration yields 

The role of nz(x, t )  as a rearrangement of the source flow n,(x, t )  can now be made 
clear. Integrating (23) over all x and using the mass conservation property of the 
self-collision term yields the result 

n2(x, t )  d3z = 0. s 
The distribution functionf,(x, v, t )  associated with n2 also conserves momentum 
and energy. Inspection of (22) yields the expression for f2(x ,  v, t ) :  

f2(x ,  v, t )  = /I d t ’ / d 3 y ~ ( y ,  v, t )  ~ [ x  - y - v(t - t ’ ) ]  e-wa(t-V). 

The properties of the collision integral 2 then require that 
n n  a n  

d3x mvf2d3v = 0,  d3x &nv2f2d3v = 0. J J  J J  
The total mass, momentum and energy emitted by the nozzle is thus contained 

in the source term. The self-collision term spatially redistributes the exhaust 
gas without affecting the conserved quantities. The magnitude of this redistribu- 
tion that can occur outside the continuum region will now be estimated. The 
quantities entering into the self-collision term Z(x, v, t )  will be evaluated using 
the corresponding results from the source flow term in accordance with the 
scheme outlined at the beginning of this section. 

First consider the loss term nZL in (23) defined by 

r t  

When the spatial integration is carried out, (24) reduces to 
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For values oft’ 9 to this expression further simplifies to 

Now consider the gain term nzQ in (23) : 

For times t‘ much greater than to, equation (21) may be used in (26). The expres- 
sion for 0 then becomes 

Since 18(t/to)2 > 1, application of the saddle-point method to (26) yields the 
result 

But n(xt’/t, t’) is given by (21) as 

Thus, to the present order of approximation 

The approximate cancellation is clearly due to the rapid decay of the transla- 
tional temperature as the gas expands away from the continuum region after 
the engine shut sdown. Since the above calculation neglects terms of O(to/t)  com- 
pared with unity, the relative size estimate is more accurately given as 

2 N 0 dt‘w K’,t’)). 
n1 

It is now easy to show that nz/nl < 1. The self-collision frequency w may be 
represented in the form w = cscrn,(x, t )  and cr is the effective mean collision 
cross-section. Here c, is the thermal speed (2ET,/m)*. Taking the thermal speed 
to be constant is the most conservative case and corresponds to a Maxwell 
molecule interaction potential. If the exponential terms in the representation 
(21) for n, are assumed all to be unity, the ratio nz/nl becomes 

nz/nl N tocscrQoto/c,3 t3. 

Let the time t be of O(w;l), the scale on which the interaction with the ambient 
atmosphere occurs. Then if the ambient and self-collision cross-sections are 
assumed similar in size, this expression can be rewritten as 
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Note that the smallness of thelast factor in (27) is a basic assumptionfor the entire 
analysis. Moreover, the ratio ust,/h, (the fraction of a mean free path that a mole- 
cule moving with the source velocity would travel while the motor is operating) 
is also small. The assumption that nJn, < 1 invoked at  the outset is then cer- 
tainly justified. The self-scattering contribution may thus be ignored in calcu- 
lating the far-field interaction of the exhaust gas with the atmosphere, and will 
not be considered further in this work. 

6. The scattering Green's function 
At this stage, the only role played by the ambient atmosphere is the exponen- 

tial attenuation of the free molecular flow described in the previous sections. The 
cloud of scattered particles n3(x, t)  is represented in (I  16) by a convolution of the 
free molecular flow with the scattering Green's function. The Green's function 
G(x,t) will be studied in this section, while the composite flow pattern will be 
discussed in the following section. 

The starting-point for the analysis is the transform representation of G in 
(1 1 c). The velocity integration in that expression may be readily carried out to 
yield 

z,= %--- K) (*pii a: 7r iSm -mZ,-t '  e-t2dt 
w(2,) = - - 

The spatial co-ordinates X* have been non-dimensionalized with respect to the 
ambient mean free path A,, while the natural time scale t* is measured in mean 
collision times m i l .  The function w(2,) is described in detail by Abramowitz 
& Stegun (1965), where all properties needed in what follows may be found. 

First consider the inversion over the Laplace transform variable p .  Since the 
inversion contour integral c is defined (figure 2) for Re(p) > 0 and k is real, 
Im  (2,) > 0. Under these conditions w(2,) is an analytic function which is real 
only for imaginary 2,. Thus the only singularity in the integrand of G in the right 
half p plane is a pole at  

k = d w ( i h ) ,  p +  I +i(a. k) W, = kh, w(ih) = eh*erfch. (29) 

The contour is now moved t o  the left of the pole whose location is given by 
(29). The residue at  the pole is 

Here H is the unit step function and h(k) is the inverse of the function defined in 
(28). The Fourier inversion in (30) may now be reduced by noting that the only 
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C' 

JP+* 

Deformed Ori 
contour con 

FIGURE 2. Laplace transform inversion contours used to obtain (31). 

vector in the integrand is x*-aW,t*. Defining a spherical polar co-ordinate 
system in k space with x* - aW,t as the pole, the angular integrals are easily 
evaluated, leaving 

r* = Ix-aW,t*I. 

Inspection of the remaining contour integral c' (see figure 2) shows that G is a 
function only of the two variables r* and t* .  To take advantage of this fact, p 
is replaced with the complex variable p defined by 

p+l+i(a.k)W, = -ikp. 

Again k is real so I m p  > 0 on c f .  Now multiply the integrand by a convergence 
factor ecek, where 8 > 0. Eventually e will be put equal to zero. The contour cf 
can now be shifted to the real axis in the p plane, and the k integrations reduced 
as before to obtain 
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FIGURE 3. Contour integration used to evaluate I ( p )  in (33). 

The variable p is now real. To proceed further with the second expression in (32) 
it is convenient to interchange orders of integration holding p fixed and real and 
consider the inner integral K ( p ) :  

sin kr* e-Ek-ikpt* 
K = low dkk2- 

kr* 1 - nr3k-1 w+(p) 
1 

2ir* 
= - {I(r*-pt*)-I[-r(r*+pt*)]},  

where (33) 

For 6 > 0 equation (33) may be evaluated by considering the integral over the 
upper contour shown in figure 3. For 5 > 0 the lower contour in figure 3 may 
be used. The result is 

2ip 

lPl 
I ( [ )  = - bw+(P)la e“H(p5) + Ww+(p)I2 

a = ([+is) in&w,(p). 

The function E,(a) in (34) is the exponential integral E,(a) defined by 

The second expression in (32) now becomes 

Equation (35) may be evaluated as a sum of four terms. First, the terms propor- 
tional to a--2 in I ( p )  make a contribution 
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Using the fact that w+(p) is analytic in the upper half-plane and has the asymp- 
totic behaviour 

the contribution of the a-2 terms is 
w+(p) - iln*p, p --f a, (36) 

Here, the limit 6 3 0 has been taken after performing the integration. Using 
identical analysis on the or1 contribution to (35) gives the result 

The term proportional to eaH(pg)  in I(<) leads to the following expression: 

The remaining contribution is 

Collecting all terms, the Green's function is given exactly by 

x 22c(u2- 3v2) cos [nht* (6-p) ]  - 2v(3u2 - v2)  sin [n-&ut* ( E - p ) ] )  

W 

{ 
+"s 8it*,$ -m dp [ w + ( p ) i 3 ~ e w ~ , )  - e z q ( e , ) ) ]  ( 3 7 )  

2, = in&t*(E-p) w+(p), 2, = -in%*(<+p) w+(p), 
w+(p) = u(p)+iw(p), t = r*/t*,  k = n3e"erfch. 

This expression cannot be reduced further by analytical methods for arbitrary 
values of T* and t*. However, the result (37 )  simplifies greatly for two important 
limiting cases. First, when t* is small and 6 is fixed the early-time approximation 
to G is easily seen from (37 )  to be 

Thus for early times G has a distinctly free molecular behaviour. For large t* 
and y*(t*)--d fixed all terms except the first in (37 )  are exponentially small. 
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The long-time behaviour is evidently contained in the first integral. Since r* 
is also large, a non-trivial result can only come from small k. However, small lc 
corresponds to large A:  

k + h 2 + . . . } .  1 2 

The major contribution comes from small k permitting the integral to be extended 
to infinity with negligible error. Thus 

sin Icr * 
dk Ic2 exp [ - &Ic2t*] - 

Icr * G(r*,t*) r - 

exp ( - r*'/2t*) 
(39) - - 

(2nt*)$ . 

This is the familiar diffusion Gaussian Green's function. Remembering that r* is 
given in terms of x* and t* by 

r* = Ix*-aW,t*l 

it is clear that the interaction evolves from a nearly collisionless phenomenon to a 
collision-dominated diffusion in a uniform flow. 

The asymptotic limiting forms of G given by (38) and (39) both have the 
important property 

G(x, t )  d3z = 1. (40) s 
Applying the relation 

to (28) and employing (36); it is easy to see that (40) holds exactly for all times. 
The expression (37) for G(r*, t*) has been programmed for use on a Univac 

1108 computer. The intervals were evaluated using up to 32 points in the Gaussian 
quadrature method. The estimated error is about 0.2 % for values of r* such that 

G(r*, t*)/G(O, t*)  10-3. 

The results for G are plotted versus r* for selected values o f t*  between 0.1 and 
10.0 in figures 4 (a)-(d). Figure 5 displays G(0, t * ) .  The final asymptotic form 
given by (39) is actually approached quite slowly. Approximately thirty mean 
collision times are required to obtain better than 10% accuracy using this expres- 
sion, and the error is still about 5 % at fifty mean collision times. The computing 
time was approximately 0.5 sforeachvalue of ( r * ,  t*). Thisresultsin prohibitively 
long (and expensive) calculations for the composite flow field n, + n3. To reduce 
the computing time, the accuracy requirements for the determination of G were 
relaxed. Inspection of the results showed that the last integral in (37) is approxi- 
mately 0.01 G in the r*, t* domain investigated. Elimination of this term and 
corresponding reductions in accuracy in the remaining quadrature routines 
reduced the computing time per point to 0.05 s with an estimated 2 % error in G. 
The reduced program was used to obtain the results shown in the following sec- 
tion. 
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loo 
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FIG-E 4. Evolution of the scattering Green's function at (a) early times, 0 < r* < 0.25; 
( b )  intermediate times, 0.2 < T* < 0.7; ( c )  intermediate times, 0.6 < T* < 1.1; ( d )  long times, 
0 < r* < 10.0. 
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t” 

FIGURE 5 .  Decay of the maximum value of the soattering Green’s function G(0,  t * ) .  

7. The composite flow 
The cloud of scattered molecules n3(x, t )  may be represented in the form 

n3 = It’ dt’ [ c~sx’n,(x’, t’) G(X* - X I ,  t* - t ’ ) ,  (41) 
J O  J 

This expression, together with equation (15) for n, and the results of the previous 
section, constitutes the complete description of the exhaust gas density. How- 
ever, while (15) is directly usable for numerical computation, (41) is not. The 
chief obstacle to the use of (41) is the prohibitive time and expense associated with 
the spatial integrations. An approximate evaluation of these integrals is necessary 
to obtain flow field results. 

Consider (41) for times sufficiently large for the asymptotic result (39) to 
apply. Under these conditions (4 1) becomes 
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The evaluation of K is straightforward, yielding the result 

The assumption OutO < t has also been employed to obtain (43). Comparison of 
this expression with (39) enables (43) to be written in the more revealing form 

Y = Ix* - aWu(t* -t’) -W,(T,/T,)$t’sl, 
T = t* - t’ + *(5!yT,) t’2. 

The result (44) is actually valid under a much wider range of conditions than those 
implied by the above derivation. For times t* 4 1, substitution of the leading 
term in (38) into (41) again yields (44). Moreover, for W ,  large and W,(T,/T,)ht* 
fixed, a similar result can be obtained as follows. 

Consider the integral over x’ in (41). Since G is a function of r* and t* only, 
this expression can be written as 

J ~ w J ( ~ )  G+* - x’- aK(t* -t‘)l, t* - t’). 

Under the stated conditions, application of the saddle-point method to the above 
integral leads to the result 

Equation (45) differs from (44) only in the dependence of the variable r on t’. 
For Ws(Ts/Tu).i.t* fixed and W ,  B 1, the term +(5”‘/Tu) t’2 in the expression (44) for 
T is O( W L ~ ) .  For times t* such that this contribution to 7 is of O(l) ,  7 is of O( W:) 
and (44) holds. 

The final formulae for the exhaust gas density distribution have been pro- 
grammed in the following form : 

The function Fl is defined in (15b) ,  while the computation of G is explained in 
the preceding section. 
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FIGURE 6. Isopycnal contours of nh: (Qoto) - l  at ( a )  t* = 1, ( b )  t* = 3 and (c) t* = 10 in the 
plane q5 = 0. Me = 4.77, y = 1.266, uato = 0.102, W, = 5.60, @ = 90°, T,/T, = 0-166. 
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As an example, the exhaust plume of a motor operating at right angles to the 
ambient wind is presented in figures 6 (u)-(c). The isopycnal contours in the plane 
containing the thrust vector and the wind vector are plotted at one, three and 
ten mean collision times respectively. The values of the six parameters M,, 
y, w,tO, W,, T,/T, and $ necessary to specify the flow uniquely are given in the 
caption. 

The nearly circular portion of the isopycnal contours at one collision time is 
due to the free molecular flow. The isopycnal contours of this flow are nearly 
spherically symmetric about the point x* = (T,/T,)t W,st* for t* wato. The 
long tongue of gaspointing toward the wind axis represents the cloud of scattered 
molecules caught up in the ambient wind. At three collision times the bimodal 
nature of the distribution is most evident. The scattered gas cloud and the free 
molecular flow have almost the same peak density. Note that the absolute level 
of the free molecular number density has fallen by two orders of magnitude in the 
interval. At ten collision times the flow is dominated by the scattered gas cloud. 
The tail is caused by the weighted effect of collisions at times t' c t* on the 
density (see the integral in (44)). Ultimately, the tail disappears and the flow 
asymptotically becomes spherically symmetric about x* = aWut* with the den- 
sity given by 

The author is grateful to Dr Kevin S. Tait and Dr Apostoles E. Germeles for 
performing the numerical computations reported here. This work was supported 
by the Army Ballistic Missile Defense Agency under Contract Number DAHC6O- 
71-C-0084. 
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